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Abstract 

Background In 2022, fewer than half of persons with tuberculosis (TB) had access to molecular diagnostic tests 
for TB due to their high costs. Studies have found that the use of artificial intelligence (AI) software for chest X-ray 
(CXR) interpretation and sputum specimen pooling can each reduce the cost of testing. We modeled the combina-
tion of both strategies to estimate potential savings in consumables that could be used to expand access to molecu-
lar diagnostics.

Methods We obtained Xpert testing and positivity data segmented into deciles by AI probability scores for TB 
from the community- and healthcare facility-based active case finding conducted in Bangladesh, Nigeria, Viet Nam, 
and Zambia. AI scores in the model were based on CAD4TB version 7 (Zambia) and qXR (all other countries). We 
modeled four ordinal screening and testing approaches involving AI-aided CXR interpretation to indicate individual 
and pooled testing. Setting a false negative rate of 5%, for each approach we calculated additional and cumulative 
savings over the baseline of universal Xpert testing, as well as the theoretical expansion in diagnostic coverage.

Results In each country, the optimal screening and testing approach was to use AI to rule out testing in deciles 
with low AI scores and to guide pooled vs individual testing in persons with moderate and high AI scores, respec-
tively. This approach yielded cumulative savings in Xpert tests over baseline ranging from 50.8% in Zambia to 57.5% 
in Nigeria and 61.5% in Bangladesh and Viet Nam. Using these savings, diagnostic coverage theoretically could be 
expanded by 34% to 160% across the different approaches and countries.

Conclusions Using AI software data generated during CXR interpretation to inform a differentiated pooled testing 
strategy may optimize TB diagnostic test use, and could extend molecular tests to more people who need them. The 
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optimal AI thresholds and pooled testing strategy varied across countries, which suggests that bespoke screening 
and testing approaches may be needed for differing populations and settings.

Keywords GeneXpert, Pooling, AI, CAD, X-ray, CXR, ACF, Active case finding, Tuberculosis diagnosis

Background
When the World Health Organization (WHO) recom-
mended the Xpert MTB/RIF assay (Cepheid; Sunny-
vale, CA, USA) for diagnosis of tuberculosis (TB) in 
2010, it was heralded as a game-changer [1]. This novel 
technology of cartridge-based nucleic acid amplifica-
tion test (NAAT) ushered in a new era of progress in 
TB diagnostics and was followed shortly thereafter by 
the second molecular WHO-recommended rapid diag-
nostic test (mWRD), the Molbio Truenat [2]. Today, 
the TB diagnostic pipeline is healthier than ever, with 
at least 35 other NAATs for diagnosing TB in develop-
ment [3].

Despite the bright future, only 47% of people newly 
diagnosed with TB received a mWRD as their initial 
test in 2022 [4, 5]. Meanwhile, most persons with TB 
were still diagnosed by smear microscopy, the same 
method Robert Koch used to isolate M. tuberculosis as 
the etiologic agent in 1882 [6]. Among the many causes 
for this diagnostic coverage gap, a major reason is cost 
[7, 8]. Despite recent price reductions of consumables 
and reagents [9], ensuring universal mWRD coverage 
globally may cost over $1 billion per year [10, 11].

To mitigate high mWRD costs, a screening step can 
be used to rule out people with a low probability of 
TB disease [12]. Among various options, chest X-ray 
(CXR) has become the screening tool of choice in many 
settings due to the ability to identify the large cohort of 
asymptomatic people with TB [13, 14]. More recently, 
computer-aided detection (CAD) and artificial intelli-
gence (AI) platforms to support CXR reading, such as 
qXR (Qure.ai; Mumbai, India), CAD4TB (Delft Imag-
ing; Delft, the Netherlands), and other platforms, have 
gained popularity with value propositions ranging 
from capacity creation to overcome the lack of trained 
human readers to workload reduction through triaging 
of normal CXR images [15]. For individuals 15  years 
and above, CAD/AI may be used in place of human 
reading for screening and triage, and working along-
side human readers to help automate and standard-
ize interpretation [12]. Several evaluations of CAD/AI 
compared to human readers have shown that the tech-
nology performs as well or better than expert human 
readers [16–18]. CAD/AI offers a key advantage over 
human readers through its provision of a continuous 
abnormality score (ranging from 0–1 or 0–100) which 
confers a likelihood of TB among people screened, 

unlike humans who will produce a dichotomous out-
come (TB suggestive or not), and grants greater flexibil-
ity to tailor follow-on testing to limited public health 
budgets [19].

Another recent process innovation to address the 
high costs of laboratory tests in resource-constrained 
settings that was effectively employed during the 
COVID-19 pandemic is specimen pooling. This method 
involves mixing specimens for a two-step hierarchical 
diagnostic algorithm that foregoes individual testing in 
the event of a negative pooled sample [20]. While ini-
tial TB pooling studies had found that dilution of the 
bacterial load can lead to lower levels of detection and 
potentially missed diagnoses [21], more recent evalu-
ations have reported sensitivities of 98–100% with the 
Xpert MTB/RIF Ultra assay (Xpert Ultra) [22–24]. 
This has led to reported reductions in TB testing costs 
of 57–87% depending on the pool size [25]. A recent 
cost-effectiveness analysis reported a 34.9% decrease in 
costs when comparing pooled to individual Xpert test-
ing [26].

The benefits of pooling are proportional to the preva-
lence of the disease in the target population. The lower 
the prevalence, the higher the theoretical savings. This 
raises the utility of pooling in high-throughput, low-yield 
approaches, such as active case finding (ACF) campaigns 
where large numbers of individuals need to be screened 
and tested to detect a person with TB. ACF is an impor-
tant component of all high-burden countries’ national TB 
response and is critical to reach those people who are less 
likely or able to get care in public facilities. However, it is 
more expensive to conduct outreach, and ways to reduce 
costs are urgently needed to reach all persons with TB, 
especially those with subclinical TB [27, 28].

Here, we evaluated the theoretical impact of using AI 
outputs to inform different pooling strategies based on 
Xpert testing data collected during ACF campaigns in 
four high TB burden settings with the goal of modeling 
diagnostic savings and theoretical expansion of access 
to mWRDs.

Methods
Study design
This was a retrospective analysis of ACF campaigns 
using AI probability scores to model the incremental 
reduction in Xpert cartridge consumption.
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Data sources
Data were obtained from four implementers located in 
high TB burden countries of Bangladesh, Nigeria, Viet 
Nam, and Zambia. These data consisted of aggregate 
AI abnormality scores and Xpert test results from com-
munity- and facility-based case-finding campaigns con-
ducted between 2014 and 2017 in Bangladesh and 2022 
and 2023 in all other countries. These campaigns targeted 
a heterogeneous mix of vulnerable populations particular 
to each ACF setting and country.

All countries used CXR with slightly different modali-
ties to screen for TB but presumptive TB was identified 
by either symptom screening or an abnormal chest radio-
graph. Screening methods for each country are summa-
rized here. In Bangladesh, standalone screening centers 
supported referrals of health-seeking symptomatic indi-
viduals in outpatient care departments of public and 
private sectors to conduct facility-based CXR screen-
ing and Xpert testing in Dhaka [29]. In Nigeria, mobile 
teams conducted active outreach events in remote rural 
areas using ultra-portable X-rays among people with 
limited access to healthcare services, such as pastoral-
ists and nomadic populations using verbal symptom 
screening and CXR in parallel [30]. Viet Nam delivered 
community-based ACF campaigns in rural and urban 
areas focused on household contacts, older persons, 
urban poor, and people with a history of TB with verbal 
symptom screening and CXR in parallel [31, 32]. Zambia 
used a portable X-ray system in health facilities to screen 
clinic attendees and household contacts who were symp-
tomatic [33]. Nigeria and Viet Nam used qXR v3 (Qure.
ai, India), and Zambia used CAD4TB7 (Delft Imaging, 
The Netherlands) for the generation of the AI probabil-
ity score. Bangladesh used qXR v3 and CAD4TB6 for the 
same dataset, but only qXR v3 results from the former 
were used due to concordance with the software used in 
Nigeria and Viet Nam. Xpert MTB/RIF (Bangladesh and 
Nigeria) or the newer Xpert MTB/RIF Ultra assay (Viet 
Nam and Zambia) was used for diagnostic testing of dis-
tinct individuals in all countries. Both CAD4TB and qXR 
interpret CXR images as DICOM files and produce a TB 
abnormality score that confers a likelihood that the indi-
vidual has TB and therefore should be tested. CAD4TB 
provides a score ranging from 0 to 100, while qXR pro-
duces a score ranging from 0 to 1 [34].

Model structure
Each participating country provided Xpert testing data 
aggregated by deciles (Dm, where m = 1 to 10) of AI prob-
ability scores in the range of 0–100 for CAD4TB, i.e., D1: 
AI score =  0–9, D2: 10–19 …, and, similarly, 0–0.99 for 
qXR. We calculated the positivity rate (pm) for each Dm. 

We assigned testing thresholds for each country based on 
the decile (Dm) where ~95% of cases would be detected 
(C) with Xpert testing starting at that decile to have only 
~ 5% missed cases (M) as a result of not employing Xpert 
testing in the previous deciles (Additional file 1: Table S1, 
S2, S3). The 5% rate of missed TB cases was chosen to 
acknowledge the real-life resource limitations of testing 
all people with Xpert, while still maintaining a high level 
of detection.

To model the theoretical savings, we calculated the 
theoretical number of diagnostic tests per person needed 
to achieve the same positivity through pooling for a two-
step hierarchical testing strategy [35]. The difference 
between the total actual number of individual tests per-
formed and the theoretical number of tests per person 
when employing the pooled testing strategy represented 
the number of tests saved. For the primary analysis, we 
assumed a pool size of four based on prior studies and 
that both individual and pooled testing were 100% sensi-
tive and specific [36, 37]. We then modeled four ordinal 
screening and testing approaches with increasing com-
plexity to estimate incremental savings compared to the 
previous approach (Fig. 1):

1. Baseline approach: all people with presumptive TB 
receive individual Xpert tests as per the original data-
sets;

2. CXR approach: individual Xpert tests in all deciles 
for which ΣM ~ 5%;

3. Indiscriminate pooling approach: pooled Xpert tests 
in all deciles for which ΣM ~ 5%;

4. AI-guided pooling approach: a combination of 
pooled and individual Xpert tests in all deciles for 
which ΣM  ~  5%, with individual Xpert testing in 
deciles with a pm ≥ 20%. The 20% cutoff was chosen 
based on the peak level of savings that pooling would 
generate at various levels of positivity based on the 
outputs of our model.

While we aimed to achieve a ΣC ~ 95% (≡ ΣM ~ 5%) 
for screening and testing approaches, the actual values 
were 95.7% (Bangladesh), 95.3% (Nigeria), 94.9% (Viet 
Nam), and 96.7% (Zambia).

Data analysis
We described the number of tests performed, positive 
results, and positivity rates in total and for each AI-score 
decile. We further calculated the theoretical number and 
proportion of tests saved incrementally between each 
screening and testing approach and cumulatively over 
the baseline. To characterize the optimal approach in 
each country, we identified the deciles below which test-
ing could be foregone and the deciles at which individual 
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testing instead of pooled testing would save tests. The 
number of tests saved was multiplied by the current price 
for an Xpert Ultra cartridge ($7.97) to calculate crude 
cost savings and subsequently divided by the number of 
positive test results for a unit-cost estimate per person 
diagnosed with TB [9]. To offer an alternative perspective 
to cost savings, we estimated the ratio of additional tests 
that could be performed with the savings over the theo-
retical number of tests needed for the current cohort as 
a measure of the extent to which access to mWRDs could 
have been expanded by employing the optimal screening 
and testing approach.

For the sensitivity analyses, we modeled using pool size 
of three [22] and relaxed the 100% sensitivity and speci-
ficity assumption of the pooling method to 95% and 98%, 
respectively, based on systematic review findings from 
pooling with Xpert Ultra as Xpert MTB/RIF will be dis-
continued in 2024 using the datasets from all countries 
[23]. We used binGroup2 package in R for the analysis 
and have publicly availed all data and analysis code [38, 
39].

Results
Dataset characteristics
In the two facility-based ACF settings, Bangladesh and 
Zambia performed 24,079 and 2353 Xpert tests with a 
matching corresponding AI result, respectively. In the 
community-based ACF settings, Nigeria performed 1021 
and Viet Nam performed 5074 tests. Positivity rates were 
15.3% (3679/24,079) in Bangladesh, 11.6% (273/2353) 
in Zambia, 9.0% (455/5,074) in Viet Nam, and 8.3% 
(85/1021) in Nigeria (Fig. 2).

In terms of testing distribution by AI-score decile, most 
countries exhibited similar U-shaped patterns except 

Zambia (Fig. 3A). In Zambia, almost half (49.3%) of the 
tests were conducted in D5–D6. Meanwhile, 40.6% of 
Xpert tests in Bangladesh had an AI score in the lowest 
decile (D1), which was higher than Viet Nam (22.1%), 
Nigeria (17.4%), and Zambia (2.5%). Meanwhile, the 
testing rate in the AI-scores D4–D5, were higher in 
Nigeria (D4:15.3% and D5:15.0%) compared to Bangla-
desh (D4:4.1% and D5:3.9%) and Viet Nam (D4:5.4% and 
D5:5.2%).

In terms of positivity by AI-score decile (Fig. 3B), the 
two facility-based ACF sites exhibited higher rates than 
the community-based counterparts. In Bangladesh, posi-
tivity was higher in the high AI-score deciles of D7–D10 
than in the other countries, with rates increasing from 
12.3 to 70.0%. Zambia exhibited a similar pattern with a 
lower peak with rates, ranging from 13.6 to 65.1% for D7 
and D10, respectively. In comparison, the respective posi-
tivity of D7 and D10 only rose from 4.8 to 28.7% in Nigeria 
and from 6.3 to 30.6% in Viet Nam.

Tests cost savings in the model output
All incremental screening and testing approaches 
resulted in additional savings except the indiscrimi-
nate pooling approach in Bangladesh and are presented 
for each country in Table  1. In Bangladesh, the CXR 
approach resulted in savings of 52.5% over baseline. 
Based on model parameters, these savings were real-
ized at an AI threshold of 0.30–0.39, i.e., foregoing test-
ing for D1–D3 and individually testing everyone in higher 
deciles. Indiscriminately pooling all persons in D4–D10 
actually resulted in excess of 2.0% of tests over the CXR 
approach. Using AI to indicate individual testing for 
high AI-score deciles D9–D10 reversed this trend and 
increased cumulative savings to 61.5%.

Fig. 1 The framework for analysis of the role of AI and its impact on Xpert testing
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The model assumes pool sizes of 4 with both pooling 
and individual testing sensitivity and specificity of 100% 
for a testing threshold resulting in missed cases of 4.4%, 
4.7%, and 5.1% for Bangladesh, Nigeria and Viet Nam 
using qXR v3, respectively, and 3.3% for Zambia using 
CAD4TB v7. Incremental savings indicate the difference 
from the prior testing approach in the table (e.g., indis-
criminate pooling approach compared to CXR approach 
or AI-guided pooling approach compared to indiscrimi-
nate pooling approach), whereas cumulative savings are 
calculated against the baseline approach.

In Zambia, the CXR approach yielded savings of 16.7% 
over baseline at an AI threshold of 0.3. Indiscriminately 
pooling all persons in D4 and higher produced incre-
mental savings of 31.0% and cumulative savings over the 
baseline of 42.5%. Per AI guidance, testing reverted to an 
individual basis in D8–D10 to yield additional savings of 
14.3% for cumulative savings of 50.8%.

The CXR approach in Nigeria showed an initial savings 
of 27.7% in testing at an AI threshold of 0.3 above which 
indiscriminate pooling reduced an incremental 37.8% 
in testing for a cumulative savings of 55.0% over base-
line. There were diminishing returns from the AI-guided 
pooling approach as switching to individual testing in D10 
led to incremental and cumulative savings over the base-
line were only 5.4% and 57.5%, respectively.

In Viet Nam, the CXR approach reduced testing by 
42.5% at an AI threshold of 0.4. Meanwhile, indiscrimi-
nate pooling above the AI threshold saved an incremental 
27.7% in testing over the CXR approach for a cumulative 
savings of 58.4% over baseline. Similar to Nigeria, the AI-
guided pooling approach indicated individual testing in 
D10 which added 7.3% in incremental test reductions for 
a cumulative savings of 61.5% (Fig. 4).

In Bangladesh, the number of tests needed declined 
from 24,079 to 9262 for savings of 12,403–14,817 tests. 
This translated to $98,852–$118,091 in crude costs or 
$26.87–$32.10 per person with TB diagnosed (Table  2). 
Alternatively, these savings could be redeployed for an 
expansion of mWRD access of 110–160% with existing 
public health resources. In Zambia, the number of tests 
dropped from 2353 to 1158 for savings of 393–1195 tests. 
This implies cost savings of $3132–$9524 or $11.47–
$34.89 per person with TB for a theoretical expansion of 
mWRD access of 20–103%. Based on test volume reduc-
tions from 1021 to 434 in Nigeria, the total test and cost 
savings ranged from 283 to 587 and $2256–$4678 or 
$26.54–$55.04 per person with TB. This represented 
38–135% in potentially greater access to mWRD. Lastly, 
in Viet Nam the number of tests needed fell from 5074 to 
1955 for 2157–3119 tests saved corresponding to crude 
savings of $17,191–$24,858 or $37.78–$54.63 per person 

Fig. 2 Xpert testing data for the four countries. Legend. The percentages are reported with reference to number of tests performed. The Xpert 
positivity ranged from 8% in Viet Nam to 15% in Bangladesh.
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with TB. This represented a potential mWRD expansion 
of 74–160%.

Incremental savings indicate the difference from the 
prior case, whereas cumulative savings are calculated 
against the baseline approach. Crude cost savings are 
based on a cost of $7.97 per Xpert Ultra cartridge. Per-TB 
cost savings are based on a number of positive test results 
of 3679 in Bangladesh, 273 in Zambia, 85 in Nigeria, and 
455 in Viet Nam. mWRD access expansion was calculated 
by dividing the number of cartridges saved by the num-
ber of cartridges used in each individual screening and 
testing approach.

The sensitivity analyses did not show a substantial 
change in the results. Across all different scenarios, the 
change in savings against the primary case (pool size of 
three with pooled sensitivity and specificity of 1) ranged 
from − 9.4% to + 7.6%. Testing in smaller pools increased 
the number of tests used. Reducing pooling sensitivity 
reduced test usage and so did increasing pooling specific-
ity, which will result in an increase in missed cases and 

false positives, respectively, for the overall two-step hier-
archical testing algorithm. (Additional file 1: Table S4) In 
Bangladesh, we compared savings between qXRv3 and 
CAD4TBv6 and found that differences were small (0.3%). 
CAD4TB scores resulted in 9200 tests in the AI-guided 
pooling approach compared to 9262 in qXRv3 against the 
baseline case of 24,079 tests. (Additional file 1: Table S5).

Discussion
Our modeling study results show that the combined use 
of computer-aided chest radiography and pooling may 
achieve compounding effects to achieve significant sav-
ings in diagnostic consumables that could be redeployed 
to increase the global coverage of mWRDs. We further 
found that the substantial heterogeneity in AI thresh-
olds and the impact of AI scores on subsequent pooling 
across the different settings will require differentiated 
deployment of these two innovations in order to opti-
mize the potential gains. However, while countries and 
settings may differ, it appears that the various screening 

Fig. 3 Distribution of tests performed and test positivity across the AI-score deciles for the four countries. A Testing distribution by AI-score decile 
refers to the percentage of total tests performed within each AI-score decile. B Test positivity by AI-score decile shows the proportion of positive 
results in each AI-score decile. The decile labels (D1 to D10) represent AI-score deciles; D1–D10 for 0–0.99 in 0.1 intervals for qXR score and D1–D10 
for 0–99 in 10-point intervals for CAD4TB score
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and testing approaches particularly the AI-guided pool-
ing approach may be able to achieve consistent results 
between the most advanced software platforms.

Across the different countries, settings, and 
approaches, the combination of using CXR with AI 
scores to inform decisions on pooling sputum produced 
cumulative savings on testing of 50.8–61.5% over base-
line compared to universal testing of all individuals with 
signs of TB. In 2022, Bangladesh tested only 20% of peo-
ple with TB with mWRDs as the first-line diagnostic test. 
While the gap was smaller in Nigeria, Zambia, and Viet-
nam, three in ten persons with TB were not diagnosed 
using molecular diagnostics [4]. Our results suggest that 
more than twice as many people could be tested for the 
same diagnostic test costs using CXR and pooling as 
compared to testing all presumptive individuals.

A major contributor to this potential capacity expan-
sion was the use of AI and CXR. As the data of all 
countries originated from ACF campaigns rather than 
prevalence surveys, each dataset included an inherent 
level of preselection or pre-screening to raise the TB 
prevalence in the sample. This pre-filtering may have con-
sisted of targeting highly vulnerable populations, such as 
contacts (Zambia), deploying in high-yield settings such 
as health facilities (Bangladesh), or having a previous 

binary read of the CXR by a potentially inexperienced 
human reader (Viet Nam) [17]. Despite these methods 
of preselection, our study once again highlighted the 
well-documented effectiveness of CXR for screening and 
triaging for TB [40–43]. Beyond that, we observed incre-
mental savings by leveraging the AI’s quantitative output 
to optimize CXR interpretation and forego testing in 
lower AI-score deciles. This approach was particularly 
useful in settings with a high testing proportion in the 
lowest decile such as Bangladesh and Viet Nam, the first 
screening and testing approach generated already gener-
ated cumulative savings of 52.5% and 42.5%, respectively. 
This optimization of testing volumes through computer-
aided chest radiography was also concordant with the 
available evidence [18, 30].

Our model suggested that in each country, pooling 
could be effective for generating additional savings in 
testing. However, our model also evinced differences 
across both pooling strategies based on the popula-
tions screened and the results of the CXR and AI. For 
instance, in the facility-based settings of Bangladesh 
and Zambia, 65–70% of individuals in the highest 
decile had bacteriologically confirmed TB compared 
to only 29–31% in Nigeria and Viet Nam’s community-
based ACF cohort. This dichotomy was reflected by the 

Table 1 Incremental and cumulative savings by country

CXR Chest X-ray, AI Artificial intelligence. Incremental savings are the test saved compared to the previous approach. Cumulative savings are the tests saved compared 
to the baseline approach

Tests used Incremental savings Cumulative savings

N N % N %

Bangladesh

 Baseline approach 24,079

 CXR approach 11,448 12,631 52.5% 12,631 52.5%

 Indiscriminate pooling approach 11,676 − 228 − 2.0% 12,403 51.5%

 AI-guided pooling approach 9262 2414 20.7% 14,817 61.5%

Zambia

 Baseline approach 2353

 CXR approach 1960 393 16.7% 393 16.7%

 Indiscriminate pooling approach 1352 608 31.0% 1001 42.5%

 AI-guided pooling approach 1158 194 14.3% 1195 50.8%

Nigeria

 Baseline approach 1021

 CXR approach 738 283 27.7% 283 27.7%

 Indiscriminate pooling approach 459 279 37.8% 562 55.0%

 AI-guided pooling approach 434 25 5.4% 587 57.5%

Viet Nam

 Baseline approach 5074

 CXR approach 2917 2,157 42.5% 2157 42.5%

 Indiscriminate pooling approach 2110 807 27.7% 2964 58.4%

 AI-guided pooling approach 1955 155 7.3% 3119 61.5%
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pooling approach, as the AI-guided pooling, i.e., rever-
sion to individual testing in high deciles, continued to 
generate substantial savings in the facilities, while the 
model exhibited substantial diminishing returns in 
the low-yield community setting. Interestingly, while 
indiscriminate pooling saved tests in three countries, 
in Bangladesh it actually increased testing unless an 
AI-guided pooling approach was used. In Bangladesh, 
where reads for both qXR and CAD4TB were available, 
the performance on both platforms was highly concord-
ant. However, each required adjustment of the testing 
threshold, highlighting the need for end-user optimi-
zation based on the local epidemiology and platforms 
used. The approaches may be further optimized based 
on where sample volumes allow more pools. In one 
such additional approach, the AI-guided cohort pool-
ing case resulted in up to 2.5% additional savings over 
the AI-guided pooling case. (Additional file 1: Table S5) 
Nevertheless, these findings inspire confidence in the 

high precision that characterizes many of today’s com-
mercial AI solutions for TB [16].

This variability was encountered in different areas of 
our study and represented its key strength. For exam-
ple, in contrast to the high savings achieved through the 
CXR approach in Bangladesh and Viet Nam, savings in 
Nigeria and Zambia were only 28% and 17%, respectively. 
Yet, both countries differed substantially in the addi-
tional gains from each incremental pooling approach. 
The testing distribution patterns also exhibited discord-
ance, as all countries exhibited a U-shaped curve except 
Zambia, or in positivity by decile, whereby reversion to 
individual testing of the AI-guided pooling approach 
occurred in D8 for the Zambian dataset, in D9 for the data 
from Bangladesh and D10 in Nigeria and Viet Nam. Given 
the variation among the data we analyzed, any program 
implementing such an approach should consider indi-
vidual results before deciding on a specific AI and pool-
ing strategy. However, the results suggest that efficiency 

Fig. 4 Tests performed under different approaches in the four countries. Legend. The model assumes pool sizes of 4 with both pooling 
and individual testing sensitivity and specificity of 100% for a testing threshold resulting in missed cases of 4.4%, 4.7%, and 5.1% for Bangladesh, 
Nigeria, and Viet Nam using qXR v3, respectively, and 3.3% for Zambia using CAD4TB v7. The percentages are reported with reference 
to the baseline approach for the respective countries
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gains are likely across different settings. Particularly with 
respect to the optimal application of AI and its continu-
ous outputs, there has been much discussion about using 
different AI threshold scores. However, the growing evi-
dence base suggests variability in AI performance across 
demographic, clinical, or behavioral characteristics of the 
population, screening setting, or even radiography equip-
ment, which underscores the well-documented need for 
local calibration and threshold setting [18, 19, 44]. Simi-
larly, while general pooling can save costs, optimizing 
a pooling strategy will depend on the use of local data, 
capacities, and established practices.

Our study has a limitation in that modeled results are 
fraught with assumptions about performance and each 
situation will differ. AI technology changes rapidly and 
our data comes from different time periods with differ-
ent screening approaches, but the results are generally 
similar in improving efficiency with AI. In the primary 
analysis, we assume perfect sensitivity and specific-
ity for both pooling and individual testing, which is 
unlike real-world performance. While we attempt to 
mitigate this limitation in the sensitivity analysis by 
varying the pooling parameters, we do not model the 
overall performance of the diagnostic algorithm, e.g., 
the overall sensitivity and specificity of a combination 
of no testing, individual testing, and pooled testing in 

the AI-guided pooling case. This will also impact the 
overall number of missed cases in the algorithm, lead-
ing to continued transmission and potential mortal-
ity. False positive results would increase testing costs 
and workload. We do not expect a substantial impact 
on the number of tests given the superior performance 
of Xpert Ultra in both individual and pooled testing 
documented previously and encourage future prospec-
tive evaluations to factor in these considerations, in 
addition to other implementation challenges. None of 
these studies used culture to quantify how many people 
would have been missed due to Xpert Ultras’ imperfect 
sensitivity, but our analysis was focused on optimizing 
molecular testing. Importantly, our model assumes AI 
is available to interpret CXR images but does not have 
any other cost for the technology which has a cost, as 
do human readers. Costing studies on AI and CXR are 
urgently needed as programs consider adopting the 
technology and so are cost-effectiveness analyses that 
capture the complete costs of pooling interventions. 
Future work should also consider different scenarios 
(e.g., paucibacillary samples, children) which may 
have different results from pooled testing approaches. 
Lastly, although the data are based on real-world ACF 
activities they did not contain the daily distribution 
of people with presumptive TB and their abnormality 

Table 2 Crude total and per-TB detection cost savings and mWRD access expansion by country

CXR Chest X-ray, AI Artificial intelligence, Mwrd Molecular WHO-Recommended Rapid Diagnostic

Crude cost savings ($) Per-TB cost savings ($) mWRD access expansion

Incremental Cumulative Incremental Cumulative Incremental Cumulative

Bangladesh

 Baseline approach

 CXR approach 100,669 100,669 27.36 27.36 110.3% 110.3%

 Indiscriminate pooling approach − 1817 98,852 − 0.49 26.87 − 2.0% 106.2%

 AI-guided pooling approach 19,240 118,091 5.23 32.10 26.1% 160.0%

Zambia

 Baseline approach

 CXR approach 3132 3132 11.47 11.47 20.1% 20.1%

 Indiscriminate pooling approach 4846 7978 17.75 29.22 45.0% 74.0%

 AI-guided pooling approach 1546 9524 5.66 34.89 16.8% 103.2%

Nigeria

 Baseline approach

 CXR approach 2256 2256 26.53 26.53 38.3% 38.3%

 Indiscriminate pooling approach 2224 4479 26.16 52.70 60.8% 122.4%

AI-guided pooling approach 199 4678 2.34 55.04 5.8% 135.3%

Viet Nam

 Baseline approach

 CXR approach 17,191 17,191 37.78 37.78 73.9% 73.9%

 Indiscriminate pooling approach 6432 23,623 14.14 51.92 38.2% 140.5%

 AI-guided pooling approach 1235 24,858 2.72 54.63 7.9% 159.5%
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scores. Hence, for this analysis, we assumed 100% 
completeness in pool sizes with four sputum speci-
mens per pool. Pooling decisions based on abnormality 
scores such as the AI-guided pooling approach would 
require that these data be included in the laboratory 
order form, and on occasion require pools of two or 
three specimens, which might impact overall savings 
and complicated pooling rules may cause confusion in 
laboratories. However, we conducted this sensitivity 
analysis, which also showed that the impact on overall 
savings was small.

The real-world readiness for computer-aided chest 
radiography-informed pooling in real-time in program-
matic settings can be challenging. Despite the posi-
tive reception of pooling by laboratory technicians for 
its time-saving properties [22], pooled testing for TB 
is not feasible in all laboratories. For example, though 
specificity issues have not been widely reported, the 
manipulation of several samples bears the risk of con-
tamination. CXR and AI are also not readily available 
in most high TB-burden countries. Nevertheless, as 
pooling becomes established practice in more indica-
tions and access to AI improves, this type of pragmatic 
approach could mitigate commonly encountered car-
tridge shortages and provide more people with signs of 
TB access to molecular tests and should be evaluated 
prospectively to see how they work in real-world set-
tings [39].

Conclusions
To achieve End TB Strategy goals, it is necessary to 
optimize the use of available tools. Integrating com-
puter-aided chest radiography and pooling into TB 
screening and testing algorithms has the potential 
to substantially reduce diagnostic testing, thus free-
ing up constrained financial and human public health 
resources to save costs and extend access to more peo-
ple in need of high-quality, rapid molecular testing for 
TB.
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