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Abstract 

Background COVID-19 will not be the last pandemic of the twenty-first century. To better prepare for the next one, 
it is essential that we make honest appraisals of the utility of different responses to COVID. In this paper, we focus spe-
cifically on epidemiologic forecasting. Characterizing forecast efficacy over the history of the pandemic is challenging, 
especially given its significant spatial, temporal, and contextual variability. In this light, we introduce the Weighted 
Contextual Interval Score (WCIS), a new method for retrospective interval forecast evaluation.

Methods The central tenet of the WCIS is a direct incorporation of contextual utility into the evaluation. This neces-
sitates a specific characterization of forecast efficacy depending on the use case for predictions, accomplished 
via defining a utility threshold parameter. This idea is generalized to probabilistic interval-form forecasts, which are 
the preferred prediction format for epidemiological modeling, as an extension of the existing Weighted Interval Score 
(WIS).

Results We apply the WCIS to two forecasting scenarios: facility-level hospitalizations for a single state, and state-
level hospitalizations for the whole of the United States. We observe that an appropriately parameterized application 
of the WCIS captures both the relative quality and the overall frequency of useful forecasts. Since the WCIS represents 
the utility of predictions using contextual normalization, it is easily comparable across highly variable pandemic sce-
narios while remaining intuitively representative of the in-situ quality of individual forecasts.

Conclusions The WCIS provides a pragmatic utility-based characterization of probabilistic predictions. This method 
is expressly intended to enable practitioners and policymakers who may not have expertise in forecasting but are 
nevertheless essential partners in epidemic response to use and provide insightful analysis of predictions. We note 
that the WCIS is intended specifically for retrospective forecast evaluation and should not be used as a minimized 
penalty in a competitive context as it lacks statistical propriety. Code and data used for our analysis are available 
at https:// github. com/ maxim ilian- marsh all/ wcis.
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Background
The advent of the COVID-19 pandemic precipitated a 
massive public health response, including a significant 
modeling effort [1, 2]. In the United States, this quickly 
resulted in the formation of the COVID-19 Forecast Hub, 
a repository for short-term pandemic predictions [3]. 
Similar to prior collective forecasting efforts focused on 
seasonal influenza, dengue, and Ebola, the Forecast Hub 
solicited predictions from a large and diverse group of 
modelers, synthesizing their submissions into ensemble 
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forecasts of COVID-19 cases, deaths, and hospitaliza-
tions. These outputs were provided to the United States 
Centers for Disease Control and Prevention (CDC) for 
policy making and dissemination to the public [4–9]. In 
addition to modeling efforts like the Hub at the regional 
level, COVID prompted a considerable amount of more 
granular forecasting, such as predictions for individual 
medical facilities [10, 11]. Despite this abundance of pan-
demic modeling, translating short-term epidemiological 
forecasts into applicable, actionable, and insightful deci-
sion-making remains a significant challenge [7, 12–17].

Probabilistic predictions are preferred in many disci-
plines, including the epidemic forecasting community. 
Unlike single outcome “point” predictions, probabilis-
tic forecasts convey the uncertainty of the underlying 
model. This is particularly important given the difficulty 
of correctly interpreting a quickly-evolving pandemic [7, 
18]. The extant Weighted Interval Score (WIS), an error 
metric for quantile forecasts that approximates the Con-
tinuous Ranked Probability Score, is the primary method 
used to evaluate Forecast Hub submissions [19, 20]. As 
summarized by Bracher et  al., “the (Weighted Interval) 
score can be interpreted heuristically as a measure of dis-
tance between the predictive distribution and the true 
observation, where the units are those of the absolute 
error” [19]. The WIS is an effective metric for real-time 
prediction scoring, model comparison, and ensemble 
forecast creation [20]. However, the WIS is limited in its 
ability to be used for intuitive forecast utility analysis, in 
particular because the score is scaled on the order of the 
prediction data [19]. Retrospective pandemic evaluation 
involves comparing scenarios of highly different scales. 
One example of such a comparison would be between 
regions with large baseline differences in data magni-
tudes, such as highly vs sparsely populated regions (as in 
the Forecast Hub). Another situation where scale-related 
contextualization is essential to consider is the compari-
son of periods of high vs low epidemic activity (surge vs 
non-surge). In fact, both of these spatial and temporal 
scaling challenges are often necessary to consider at the 
same time (see Additional file 1 for motivating examples 
of these issues drawn from state-level pandemic scenar-
ios in the United States).

Our work is framed around the two following ideas. 
First, any meaningful measurement of forecast quality 
must arise from the context into which predictions are 
disseminated. In other words, a useful forecast improves 
real-time knowledge and/or decision-making capabili-
ties. The reverse also holds: a forecast is not useful if it 
is incapable of providing (or if it provides information 
detrimental to gaining) better real-time information or 
improved decision-making. Second, for the purposes 
of enabling the comparison of forecast performances in 

disparate scenarios without post-processing, a helpful 
score should be a relative metric. Taken together, these 
two concepts form the aim of this study: creating a con-
sistently meaningful probabilistic scoring method with 
endogenous contextualization. Such a score should nor-
malize forecast performance as a function of the ability 
of the forecast to be used in the specific environment in 
which it was made. This way, despite potentially occur-
ring in radically different spatial and temporal scenarios, 
individual predictions can be meaningfully compared to 
others. We believe that these attributes are highly impor-
tant in the context of pandemic preparedness efforts 
given the need to more strongly connect the modeling 
and policy-making spheres of the public health commu-
nity. Decision-makers need to be able to assess whether 
or not forecasting has the capacity to positively contrib-
ute to pandemic response.

To meet this goal, we introduce the WCIS: a score 
designed to reflect relative forecast quality using a flex-
ible and contextually specific retrospective parameteriza-
tion of utility. The WCIS was designed as an extension of 
(not a replacement for) the extant WIS, which functions 
well for real-time forecast scoring and ensemble genera-
tion. In this paper, we detail the technical basis and for-
mulation of the WCIS, and demonstrate using relevant 
test cases that it is intuitively meaningful, interpretable, 
and comparable.

Methods
Review of the Weighted Interval Score
The Weighted Contextual Interval Score (WCIS) builds 
directly from the Weighted Interval Score (WIS). 
Bracher et al. [19] provide an excellent explanation of the 
mechanics of the score and its applications in epidemiol-
ogy, and we endeavor to use the same symbology when-
ever possible. For brevity, the entire WIS formulation is 
not reviewed here, but the key elements (that are also 
important to the WCIS) are necessarily summarized:

• We assume a submission of K interval forecasts 
drawn from a predicted distribution F, a probabilis-
tic representation of the target variable. Each of the 
K forecasts represents a (1− αk) prediction interval 
(PI). These intervals are delineated by their lower and 
upper bounds l and u, the α

2
 and 1− α

2
 quantiles of 

the predicted distribution, respectively. For example, 

(1)ISα(F , y) = (u− l)+
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a 95% interval would be represented by an αk of 0.05, 
its lower and upper bounds defined by the 0.025 and 
0.975 quantiles of F.

• A predictive median m (point prediction) is submit-
ted, and the true target value y is known.

• For each interval k ∈ {1, 2, ...,K } , an individual 
Interval Score (IS) is calculated, penalizing both the 
width/sharpness of the interval: u− l , and (if neces-
sary) the amount by which the interval missed the 
true value: 2

α

(

l − y
)

�
{

y < l
}

+ 2

α

(

y− u
)

�
{

y > u
}

 
[21]. Note that the “miss” component is scaled by the 
inverse of α , thus narrower prediction intervals are 
penalized less for missing than are higher confidence 
submissions.

• The WIS is a weighted average of each of the K Inter-
val Scores and the absolute error of the predictive 
median, with the weights wk used for the average cor-
responding to α

2
 for each interval.

Contextualizing point forecasts
Although the WCIS (like the WIS) is an interval score, 
it is framed around a point score that we call the Con-
textual Relative Error (CRE). The CRE maps the absolute 
error of a point forecast x to its contextual utility. This is 
achieved by specifying δ , the utility threshold parameter. 
(Note that δ is the only parameter in the WCIS formula-
tion that does not already appear in the WIS score.)

δ is the magnitude of the absolute error above which 
a forecast loses its utility. The CRE is so named because 
instead of mapping to the distance between a predicted 
value and its target like absolute error, it maps to an 
interval from 0 to 1. A score of 0 indicates a forecast with 
maximum possible utility (with an absolute error of 0), 
and a score of 1 indicates a useless forecast (with an abso-
lute error of δ or more). See panel (a) of Additional file 1: 
Fig. S1 for a graphical representation of the CRE. An 
important feature to note is the “plateau” of the metric 
when the absolute error exceeds δ . This might seem prob-
lematic, given that beyond the δ threshold the absolute 
error is capable of increasing without any commensurate 
increase in the CRE. This is, in fact, the desired behavior 
of the CRE and warrants a slight re-framing of perspec-
tive. Selecting δ requires, when applying the CRE (and the 
WCIS, as it is a generalization of the CRE from point to 
interval scores), identification of a practical limit for how 
a forecast is used or interpreted in a particular context or 
for a particular purpose. For example, in many scenar-
ios we have a finite capacity to respond to an expected 

(3)CRE(x, y, δ) = min

{

|x − y|

δ
, 1

}

outcome. If the “demand” imparted by an incorrect fore-
cast exceeds that capacity, we are unable to alter our 
response despite an apparent increase in need. Therefore, 
an incorrect forecast with an absolute error of 2 δ wastes 
exactly as many resources as a incorrect forecast of mag-
nitude δ , where δ precipitates the maximum allocation in 
response to the forecast. A different way to interpret δ is 
as an “absorbable error magnitude”. The test cases later in 
the paper frame δ this way, where a decision-maker has 
limited capacity to recover from plans made according to 
forecasted outcomes. If the forecast is wrong enough that 
it precipitates an action that cannot be recovered from, 
such a forecast has met or exceeded the δ threshold.

Note that δ is both a normalizer and a limit. Thus a 
forecast with an absolute error greater than δ is not at all 
useful, and a forecast with an absolute error less than δ 
is evaluated as a ratio of δ . This gives the CRE (and the 
WCIS) the ability to provide information about both 
forecast quality and how frequently forecasts are useful, 
which, as demonstrated later, is helpful for intuitive anal-
ysis and performance visualization.

Contextualizing interval‑form forecasts
We begin by introducing the Contextual Interval Score 
(CIS). The CIS is both a probabilistic extension of the 
Contextual Relative Error, and a contextualized version 
of the Interval Score. Like the CRE, it maps a forecast’s 
error to the δ-parameterized utility space, and like the 
IS, it generates a score for a single-interval forecast. (In 
fact, the CIS can be equivalently formulated in two differ-
ent ways, based on either the IS or the CRE. For brevity, 
we use the IS-based formulation here but, particularly if 
more intuition about the score is desired, we suggest ref-
erencing the explanation of the CRE-based formulation 
in Additional file 1.)

The WCIS is the simple average of the CIS across all α
-intervals and the CRE of the predictive median m:

Note that we still retain the descriptor “Weighted” in 
the WCIS title even though there are no weights directly 
included in its formulation, whereas each component 
of the WIS is multiplied by α

2
 . However, in our formula-

tion, the same weights are effectively applied directly 
to the individual constituent CIS scores. Instead of the 
“miss” components of the score being multiplied by 
2
α
 , the “width” term is scaled by α

2
 . Thus when the aver-

age is taken to create the WCIS, the scaling effect is the 
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2δ
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}
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1

K + 1

(

CRE(m, y, δ)+

K
∑

k=1

CISαk (F , y, δ)

)



Page 4 of 11Marshall et al. BMC Global and Public Health            (2024) 2:67 

same as the WIS, but the weights are applied in this way 
because it preserves the interpretability of the individ-
ual single-interval CIS components as described above. 
Another notable difference is the WCIS uses K + 1 for 
the denominator of the average (unlike K + 1

2
 in the WIS) 

because like the single-interval components, the predic-
tive median component of the score has a maximum pen-
alty of 1. This, and the bound on each CIS term, means 
the WCIS also takes values only on the interval from 0 
to 1. Note the natural equivalence between the WCIS for 
interval forecasts and the CRE for point forecasts, which 
mirrors that between the WIS and the absolute error. In 
both cases, the interval scoring method preserves the 
behavior and intuitive interpretation of the correspond-
ing point forecast technique. Code that includes the 
WCIS formulation (and the analysis below) can be found 
at https:// github. com/ maxim ilian- marsh all/ wcis.

Results
The WCIS is expressly intended to be a flexible scoring 
method and as such there are many possible and highly 
variable ways to apply it. We use this Results section to 
present two demonstrative use cases. Both scenarios eval-
uate COVID-19 hospitalization forecasts, but each works 
at a different scale and uses a necessarily different δ for-
mulation. The first scenario applies the WCIS to results 
from a multi-facility-level forecasting model. We use this 
first application primarily to develop the intuition for the 
δ selection process. We show via a direct demonstration 
how δ can be chosen to represent contextually specific 
utility as a function of time-varying data, and explore how 
the choices made during this parameterization map onto 
the output of the WCIS. Since this section focuses more 
on the WCIS formulation and less on interpreting the 
real-world applicability of the predictions, we use fore-
casts from a model developed in-house. Conversely, the 
second test case evaluates 4 weeks ahead predictions from 
the COVID-19 Forecast Hub’s ensemble model, examin-
ing hospitalization forecasts from May 2021 to May 2022 
[3]. This period includes both the Delta and Omicron var-
iant waves and allows for a larger exploration of the utility 
and communicability of the WCIS. Data for these analyses 
are sourced from the COVID-19 Reported Patient Impact 
and Hospital Capacity by Facility dataset for the first sec-
tion and from the Forecast Hub’s repository for the sec-
ond [3, 22]. Both datasets are publicly available.

Facility‑level analysis (first test case)
As introduced above, our first test case evaluates a facil-
ity-level hospitalization model. More specifically, the 
model forecasts daily COVID-19 bed occupancy, for each 
individual hospital in Maryland, from one to twenty-
one days out, from July 2021 to July 2022. Because our 

δ selection reflects capacity management within the 
3-week forecast window, we only use hospitals listed as 
“short-term” type (this excludes long-term and pediatric 
facilities) and for relevance only include facilities that had 
at least ten COVID-19 patients at some point during the 
time range specified. The particular time range used was 
chosen because contextualization is vital when compar-
ing and contrasting scenarios with highly different levels 
of pandemic activity, and July 2021 to July 2022 includes 
the Omicron wave in Maryland. This scenario and facil-
ity selection yields 42 hospitals with an overall capacity 
range of 30 beds at the smallest facility to 919 beds at the 
largest facility.

The model used is a Time Series Dense Encoder, using 
the prior ninety days for each hospital at each time point 
to predict the following 21 days [23]. For a complete 
model formulation, see Additional file 1, but in brief, this 
model type was selected because it is a state-of-the-art 
general-purpose time series forecaster that is efficient 
to train and flexible across different covariates, predic-
tion horizons, output types, and loss functions. We note 
that the purpose of this test case is to explore and explain 
the formulation and application of the WCIS. Thus, we 
developed this relatively basic model in order to apply the 
WCIS to a facility-level scenario, not to refine a specific 
method for forecasting hospitalizations. The predictions 
from this section are not necessarily indicative of those 
performed in real time. Because the data used for train-
ing and scoring this model may contain retrospective 
corrections of errors that were present in the real-time 
data, it has the potential for higher performance when 
compared to an equivalent in-situ forecaster.

The δ-parameterization used for this analysis is 
intended to characterize the capacity of each facility to 
absorb an incorrect allocation of COVID-19 bed space 
based on a flawed forecast. We assume that capacity 
allocations are made at forecast time, under the in-situ 
assumption that forecasts perfectly reflect future out-
comes. Thus, the δ value represents an achievable capac-
ity correction during the time interval separating the 
making of the forecast and the realization of its true tar-
get value. For example, the δ value for a seven-day-ahead 
forecast for each facility is the amount of COVID-19 
beds that each individual hospital can add or take away 
over a week. Specifically, this δ is determined as follows. 
The daily capacity change for each hospital is calculated 
as the mean of all single day, non-zero capacity changes 
over the entire available time series for each facility. δ 
for a particular forecast is then set as the product of the 
forecast horizon and the facility-specific daily change 
capacity. This means that the further out a forecast is, the 
larger (and thus more forgiving) the delta value is, based 
on the idea that the more time a facility has to respond 

https://github.com/maximilian-marshall/wcis
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to a poor allocation of resources, the greater the magni-
tude of the response can be. Please note that the particu-
lar formulation chosen here is not intended to provide an 
assessment of forecast quality outside the utility scenario 
posited by the assumptions given above. However, it 
demonstrates an important capability of utility threshold 
selection: δ can be a defined as a dynamic function of data 
that can change in time and space. Since contextually 
meaningful forecast utility varies significantly over these 
same dimensions, a broadly applicable and interpretable 
score must be similarly adaptable.

Using Figs.  1 and 2, we are able to interpret some 
important aspects of how this selection of δ maps onto 
the scoring of our facility-level model. First, consider the 
relationship between the breadth of the confidence inter-
vals and the δ region in Fig.  1, which visualizes a single 
facility. The larger prediction intervals for the 14-day-
ahead forecasts indicate less model certainty than those 
of the 2-day-ahead predictions and, all else equal, would 
yield a worse score. However, δ is significantly higher for 
the 14-day-ahead scenario, given the assumption that 
facilities have more time to adapt to inaccurate forecasts 
over longer horizons. This results in generally better per-
formance for the 14-day model. However, there remain 
in the 14-day scenario several forecasts that still receive 
a high penalty despite the more forgiving δ parameteri-
zation. Note that these instances tend to occur when the 
forecast median approaches or exceeds the utility thresh-
old. Moving to Fig.  2, we can see that these trends are 
also visible in the aggregate performance across all 42 
facilities. Comparing the WIS to the WCIS over these 
instances reveals a relatively linear relationship in the 
more forgiving scenarios, i.e., non-wave with a larger 
delta. During the wave, when absolute performance was 
broadly worse (as evidenced by the WIS values), the δ-
limit was reached significantly more often. We also draw 
attention to the clear differences in marginal distribu-
tions that are visible in the scatter plot column of Fig. 2. 
The scaling and limiting action of the WCIS distributes 
performances significantly more evenly than the WIS 
(see Additional file 1 for plots with these marginal distri-
butions included).

In general, we are able to observe that given a contextu-
ally relevant δ choice, the score is able to simultaneously 
convey an intuitive sense of both relative quality and the 
overall frequency of useful forecasts, as shown in the his-
tograms of Fig. 2.

State‑level analysis (second test case)
For this test case, we apply the WCIS to real-world pre-
dictions drawn from the COVID-19 Forecast Hub’s 
Ensemble model, asking how much contextual utility 
hospitalization forecasts provided at the state level from 

May 2021 to May 2022 [3]. (Note that Forecast Hub hos-
pitalization predictions were performed at daily resolu-
tion, but for the sake of visualizing a longer-term analysis 
we aggregate to and evaluate at weekly totals.)

The WCIS always requires a specific interpretation of 
the use-case for forecasts in the selection of the utility 
threshold δ . Similar to the facility-level analysis above, we 
choose to assess hospitalization predictions as a function 
of potential capacity changes. However, we assume a dif-
ferent decision-making scenario for hospital capacity at 
the state level than for its facility level counterpart. Due 
to the disaggregate decision-making apparatus across 
statewide hospitals and the inherent institutional inertia 
that must be overcome for larger scale change, we take a 
more conservative approach to estimating the absorbable 
error magnitude. Specifically, δ is the 0.9 quantile of the 
prior deviations in each state’s hospital bed capacity over 
the prediction horizon of the forecast. We assume prior 
bed capacity deviations are indicative of a state’s capac-
ity to make changes, and that it is more difficult to make 
changes over a shorter timeline. Thus, any deviation over 
a shorter-term horizon can also occur for longer term 
horizons, but not the reverse. For example, when exam-
ining 1 week ahead predictions, only historical capacity 
changes over the course of a single week are considered. 
For 4-week-ahead predictions, capacity changes for 1, 
2, 3, and 4 weeks ahead are considered. Finally, the 0.9 
quantile is selected as the threshold under the assump-
tion that states are not necessarily able to repeat their 
largest historical deviations, but can approach them. To 
be clear, this choice of δ is a heuristic for the amount of 
resource allocation, staffing changes, and other matters 
that hospitals might practically accomplish in response to 
an assumed change in pandemic dynamics. It is intended 
to demonstrate the WCIS given a reasonable, data-driven 
parameterization of forecast utility. Namely, a response 
predicated on a forecast outside the δ-range as defined 
here would require corrective action of a magnitude that 
could not be reasonably expected over such a forecast’s 
prediction horizon.

WCIS performance results for 4-week ahead state-
level hospitalization predictions are demonstrated in 
Fig. 3. Since the WCIS was designed primarily as a way to 
meaningfully evaluate and compare forecasts in disparate 
contexts, we can easily use it to observe several impor-
tant aspects of hospitalization forecasting performance. 
For example, during surges and declines, forecast utility 
decreases substantially. We can intuit that this is a con-
sistent trend across different locations both by directly 
observing the large central grid and by examining the 
lower, spatially averaged array of the figure. In contrast, if 
we examine the right-side, temporally averaged array, we 
observe that there is less variability in space than there 
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is in time. Thus, by making an up-front determination 
about what constitutes a useful prediction (performing 
the δ-parameterization), we are capable of making, dis-
playing, and intuitively evaluating forecasts. This allows, 
given a well-informed choice of δ , for meaningful overall 

analysis without needing to repeatedly delve into the spe-
cific circumstances during which each forecast was made. 
Without contextual normalization, conveying informa-
tive and comparable performance would be much more 
challenging. This capability, demonstrated by the ease of 

Fig. 1 Illustrated here are facility-level forecasts over two prediction horizons for one hospital: the University of Maryland Medical Center. The top 
and bottom rows both show the same forecasts, truth data, and δ (utility threshold) region. The top row displays these values normally, whereas 
the bottom row shows how far each value deviates from the truth. The middle row displays the WCIS, aligned with the data in the other rows. (Note 
that the facility-level analysis includes more prediction intervals and more dates than are shown in this figure, the extent of both displayed here are 
reduced for clarity)
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interpreting Fig. 3, is the overall aim for our creation of 
the WCIS. It permits substantive and easily interpretable 
performance evaluation.

Discussion
Given the devastating impact of COVID-19, and in the 
face of future pandemic threats, it is incumbent upon 
the epidemic forecasting community to deploy predic-
tion tools that provide meaningful and actionable utility 
to those who need them [7, 14]. An important piece of 
this effort is candid evaluation of forecasting during the 
COVID-19 pandemic, and the WCIS is designed spe-
cifically as a retrospective way to judge whether or not 
forecasting could have been useful. It is not intended 
for real-time model ranking and ensemble construction. 

Instead, the WCIS is meant for broader pandemic pre-
paredness efforts, for taking an honest look at how help-
ful forecasts could have been and thus potentially could 
be. This requires understanding the conditions in which 
forecasts were made. It also requires knowledge about 
the type of decisions the forecasts would be used to 
inform. Despite the high spatial and temporal variability 
of pandemic scenarios, its utility-based normalization 
scheme enables the WCIS to provide intuitive, meaning-
ful, and comparable characterizations of forecast quality.

The WCIS is framed around our belief that a useful 
forecast contributes meaningful and/or actionable infor-
mation given uncertain future outcomes. Determining 
whether or not forecasts accomplish this necessitates an 
explicit definition of utility. This brings up an important 

Fig. 2 Results in this figure are generated from all 42 hospitals, for all prediction dates in the facility-level model. The top three rows are 
from forecasts during the Omicron wave, and the bottom three from before and after the wave. We define the wave as lasting from November 14, 
2021, through May 15, 2022, as illustrated in Additional file 1: Fig. S4



Page 8 of 11Marshall et al. BMC Global and Public Health            (2024) 2:67 

philosophical difference between the WCIS and other 
techniques. The WCIS formulation, centered around a 
user-defined utility threshold δ , arises from our assertion 
that there will never be a one-size-fits-all solution for 

assessing and comparing short-term forecast quality. One 
must always consider prediction context and purpose 
lest standard metrics tell a misleading story. Addition-
ally, different forecast use-cases yield different judgments 

Fig. 3 Heatmap of the WCIS for 4-week-ahead hospitalization forecasts, performed by the Forecast Hub’s Ensemble model. The central and largest 
grid shows the most granular results: region- and time-specific performance. On the right and lower sides of the grid are average performances 
over time and space, respectively. The shaded line plot at the bottom of the figure is the target hospitalization variable aggregated across all 
regions. Note that its domain is aligned exactly with those of the time-dependent heatmaps above, to provide insight into the trends of the overall 
pandemic alongside the more granular information in the heatmaps. (See Additional file 1 for heatmaps over differing prediction horizons)
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of predictions. The helpfulness of a model that predicts 
rainfall, for example, will be judged very differently by a 
user deciding whether or not to bring an umbrella on a 
walk as compared to a user deciding whether or not to 
issue regional flood warnings. An incorrect forecast of 
light rain with a realization of heavy rain is good enough 
for the first user but may be catastrophic for the second. 
Forecast purpose is essential to consider. The WCIS 
ensures this by building a definition of forecast utility 
directly into the formulation of the score.

The core of the WCIS is the combined normaliza-
tion and thresholding imposed by the δ parameteriza-
tion, which incorporates a vital aspect of real-world 
forecast utility. Namely, past a certain point, changes in 
a prediction’s absolute error do not equate to changes 
in outcomes predicated on that forecast. Even when 
one forecast is more accurate than another, if both are 
beyond the utility horizon then the “better” one is not 
actually more useful, just arbitrarily closer to the truth. 
This idea is the basis for the plateaued CRE point scoring 
function, which in turn is the basis for the WCIS. While a 
metric that does not always increase the penalty as fore-
cast accuracy diminishes may seem counterintuitive, we 
believe that for characterizing contextual utility, a score 
with a limited scope of relevance is actually more intui-
tive than a score that gets arbitrarily worse (or better) no 
matter how far away it is from being helpful.

The WCIS builds on the Weighted Interval Score, add-
ing the δ-parameterization to impel users to directly 
characterize contextual utility. Judging predictions in this 
way allows for a powerful and effective normalization of 
the error, making the WCIS easy to interpret and com-
pare across heterogeneous forecasting scenarios. Impor-
tantly, this robust efficacy exists only for each individual 
definition of utility. We belabor this point because it is 
inherent to our overall assertion about forecast interpret-
ability: that a specific use case is necessary to meaning-
fully evaluate prediction quality. Without a link to how 
forecasts are used, it is difficult to consistently and mean-
ingfully evaluate them over variable spatial and tempo-
ral conditions. Metrics without an explicit connection 
to forecast utility are in essence arbitrary until they are 
contextualized. For example, the WIS and the absolute 
error represent deviation from the truth on the order of 
the target data. They inherently require analysis in the 
context of those data in order for forecast quality to be 
understood. Even scores with temporally and spatially 
specific normalization can suffer from similar issues. In 
their evaluation of the COVID-19 Forecast Hub’s perfor-
mance, Cramer et al. use the Relative Weighted Interval 
Score (RWIS) for comparison and aggregation [20]. The 
RWIS is the ratio of the WIS of the evaluated model to 
the WIS of the Forecast Hub’s Baseline model, where the 

Baseline model is a simple forward extension of the most 
recently observable data at the time of forecasting. In 
other words, the RWIS normalizes forecast performance 
relative to the performance of a naive, simple model. 
While this enables scale-indifferent forecast comparison, 
it does not ensure that these comparisons are contextu-
ally meaningful, since the performance of the Baseline 
model is highly variable in space and time [20]. We con-
trast this with an effective WCIS δ-parameterization, 
which builds contextualization directly into the formula-
tion of the score.

Before concluding, it is necessary to address the 
intended purpose of the WCIS and its limitations. The 
WCIS is not a statistically proper score (see empiri-
cal demonstration in Additional file  1), which means 
it should not be used in competitive forecasting con-
texts. In these situations, such as real-time evaluation 
of COVID-19 Forecast Hub submissions and ensemble 
creation, scores that are not statistically proper have the 
potential to be gamed [20, 21]. The WCIS is not designed 
for and should not be used for such purposes. Instead, it 
is intended for retrospective evaluation, when δ is able to 
be selected in a meaningful way. Importantly, generation 
of an appropriate δ is another limitation of the WCIS. 
Without a well-designed and contextually robust thresh-
old, the score loses its power. Finally, the thresholding of 
the score, despite providing the benefit of collapsing the 
interpretable range, means it can equate forecasts with 
dramatically different accuracies. However, and related 
to the prior limitation, an appropriately selected δ should 
render this distinction contextually irrelevant.

Determining the future role of pandemic forecast-
ing, as well as identifying areas of forecasting that need 
improvement, must at some point include the transla-
tion of modeling results to policy and decision-makers. 
The WCIS is expressly intended to function well in this 
process, allowing for intuitive characterization of forecast 
utility that can be easily communicated to an audience 
with less technical expertise. Figure 3 demonstrates this 
directly. Without effective contextual normalization, gen-
erating such a display would be challenging given large 
differences in error magnitude, likely requiring a trans-
formation (such as log-scaling) that limits interpretabil-
ity. Instead, the WCIS allows for a direct, clearly defined 
interpretation of forecast utility to be displayed and com-
pared in a technically meaningful and intuitively under-
standable way.

Conclusions
We created the WCIS to enable and encourage hon-
est and contextually specific discourse about the utility of 
short-term epidemic predictions. It incorporates predic-
tion uncertainty, keeps the technical definition of utility as 



Page 10 of 11Marshall et al. BMC Global and Public Health            (2024) 2:67 

simple as possible, and generates an intuitively interpret-
able and comparable numerical output. Our intent is to 
allow for people without specific technical experience to 
be able to interact with and evaluate probabilistic forecast-
ing in a meaningful way. As the public health community 
learns from COVID-19 and prepares for future challenges, 
explicit analysis of the utility of historical predictions is 
essential. We hope the WCIS will help with effective and 
meaningful communication between modelers and practi-
tioners in this effort.
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